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ment, within experimental errors, with the values ob-
served in the s-facial isomer (Kobayashi, Marumo &
Saito, 1972). All the observed Co-N distances are nor-
mal for Co(IIl) complexes of linear aliphatic poly-
amines. The chelate rings formed by a dien ligand in
the complex cation 4 have eclipsed envelope and sym-
metrical skew conformations, while those in the com-
plex cation B are both eclipsed envelope conforma-
tions. They are shown in Fig. 3. The Newman projec-
tions along the C-C bonds are illustrated in Fig. 4.
All the dihedral angles N-C-C-N are in the range
43~45°and are muchsmallerthanthat ina typical gauche
structure. The bond distances and angles in the hexa-
cyanocobaltate(IIl) anion are listed in Table 5. They
may be compared with those observed in (—)sg-
[Co(penten)] [Co(CN),]. 2H,0 (Muto, Marumo & Sai-
to, 1970). The closest approach between complex cat-
ions and anions occurs between the terminal nitrogen
atom of the cation and the nitrogen atom of the anion:
N(3)- -+ N(12) and N(4)- - -N(9) are 2:918 and 3086 A
respectively. The positions of hydrogen atoms attached
to N(3)and N(4)suggest that N(3)- - - N(12)and N(4)- - -
N(9) are hydrogen bonds. The water molecules are sur-
rounded by two nitrogen atoms of the anion and a termi-
nal nitrogen atom of the cation as indicated by broken
lines in Fig. 2. These N- - -O distances are mostly less
than 3 A. Other interatomic distances less than 3-5 A
between complexes are listed in Table 6.

The authors are grateful to Professor K. Yamasaki
of Nagoya University for supplying the specimens.
The computations for the structure analysis were car-
ried out on the FACOM 270-30 computer at this In-
stitute. Part of the cost of this investigation was met
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(—)sso-u-facial-[Co(dien),] [Co(CN)s].2H,0

Fig.4. Newman projections alpng the C-C bonds in the chelate
ring.

by a Scientific Research Grant of the Ministry of
Education, to which the authors’ thanks are due.
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The Crystal Structure of CsMnCl;

By J. GooDYEAR AND D.J. KENNEDY
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(Received 6 October 1972; accepted 10 December 1972)

The crystal structure of CsMnCl;, determined from Weissenberg data, is trigonal, space group R3m.
The hexagonal cell contains 9 molecules and has dimensions a=7-29 (1) and ¢=27-48 (5) A. The ¢
parameter accommodates 9 close-packed layers of composition CsCl; and the Mn ions are octahedrally
coordinated by Cl ions. The structure is closely related to that of CsNiCl,.

Introduction

Many complex halides of composition CsMCls, where
M represents a metal ion in the first transition series,
have the same structure as CsNiCl; (Tishchenko, 1955),
which consists of hexagonally close-packed CsCl;
layers with Ni octahedrally coordinated by Cl ions

such that the Ni-Cl octahedra share opposite faces to
form infinite chains of composition (NiCl;)2~ parallel
to ¢, the space group being P6s/mmnic with a ~7-2 A,
c/a=0-82 and Z=2. Recent work (Goodyear & Kenne-
dy, 1972) has shown that CsMnBr; also has this struc-
ture.

An investigation of the unit cell of CsMnCl; by Kes-
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tigian, Croft & Leipziger (1967) using a powder diffrac-
tometer technique indicated a hexagonal cell with a=
7-288 and ¢=27-44 A, and an observed density of 3-48
g cm ™3 required 9 molecules per unit cell. The g param-
eter of this cell is very similar to that of CsNiCl; and
suggests that this structure also contains CsCl; close-
packed layers; but the axial ratio, which is approx-
imately 4% times that of the CsNiCl; cell, would require
a different stacking sequence of such layers.

In the present work, a Weissenberg study of CsMnCl;
has confirmed the unit-cell data found by Kestigian,
Croft & Leipziger and a consideration of a suitable
stacking arrangement of CsCl; layers to explain the
large ¢ parameter has enabled the crystal structure to
be determined.

g ° ° °
ab
,A- -------------- A
’
Il ,,
/
= KN ] /e
7 4
, /
’ ’
Vi ’
’ ?
. U ’
III o [ II .
Mmoo «

L [ = ° Type A
[ ] [ ] [ ] [ ]
VAt 7
/7 7/

o , [ ] o , [ ]
/ ’
, e,
’ ’
4 ’
/ 7
o / a ® n
7 ,,
’ ’
o e __ i
. ° ° ° Type B
® ® [ ] [
______ @----—--
- .
7 ’
7, ’
’ ’
’ ’
7 1
® ) ) °
/ ac '

/l 4 /

7 ’

2 /7

H------ ®------ 1 ° Type €

Fig. 1. Close-packed CsCl; layers classified according to the
position of the unit cell (broken line). The circles and squares
represent Cl and Cs atoms respectively. The triangles show
possible sites for Mn atoms between different pairs of
layers; ab, bc and ac are sites between types 4 and B, B and
C. A and C respectively.
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Experimental

Single crystals of CsMnCl; were prepared by heating
an equimolar mixture of MnCl, and CsCl in a sealed
evacuated silica tube to a temperature above the melt-
ing point and then cooling the specimen to room tem-
perature at a rate of about 5°C per hour. Because of the
extremely hygroscopic nature of the material, single
crystals suitable for X-ray examination were selected
and examined in a stream of dry nitrogen and were then
mounted in Lindemann-glass capillary tubes containing
P,0..

The unit-cell dimensions were determined from
Cu Ko Weissenberg photographs, taken about the a
axis, using the method of Main & Woolfson (1963).
The density was determined by weighing a sample of the
material quickly in air and in toluene, and agreement
between the observed and calculated densities was ob-
tained by assigning 9 molecules of CsMnCl; per unit
cell. The complete crystal data are shown in Table 1.

Table 1. Crystal data

Formula, CsMnCl,
Hexagonal cell

F.W. 294-20

a=7-29 (1), c=27-48 (5) A

Z=9, D,=348, D,=3-48 gcm™?
0-0037

Mean r (cm)
102 (2=0-7107 A)

uecm™)

Intensity data were collected from equi-inclination
Weissenberg photographs taken about the g axis with
Mo Ko radiation. The intensities of 687 reflexions from
layer lines O to 6 were measured from multiple film
exposures using a Joyce-Loebl flying-spot microdensi-
tometer, although the intensities of a few very weak
reflexions had to be estimated visually against a cali-
brated scale; 251 reflexions were unobserved. These
data were corrected for the Lorentz—polarization fac-
tor and for absorption using the factors given by Bond
(1959) for a cylindrical specimen.

The observed reflexions all satisfied the condition
—h+k+1=3n, point:ng to a rhombohedral primitive
cell and R3m, R3m, R32, R3 and R3 as possible space
groups.

Determination and description of the structure

The initial structure was determined by considering a
stacking arrangement of CsCl; layers which would ex-
plain a ¢ parameter of the order of 27A. In the CsNiCl,
structure, the ¢ parameter accommodates two close-
packed layers, indicating a layer separation of about
3 A and thus suggesting 9 layers in the unit cell of
CsMnCl;. This is also consistent with the assignment
of 9 molecules per cell.

Since each Cs atom must be in contact with 12 C]
atoms, there are three possible positions of a layer in
relation to the outline of the unit cell; these correspond
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to the types 4, B and C of Fig. 1. The stacking sequence
for a 9 layer structure would then be

BABACACBC - - -, or (chh), in the usual nomencla-
ture. In the CsNiCl; structure the layers are hexagon-
ally close-packed, i.e. BABA - - -.

In a close-packed array of CsCl; layers only one
quarter of the octahedral sites are bounded exclusively
by Cl atoms and each of these must be occupied by a
Mn atom in order to obtain the correct compositional
formula. The triangular motifs in Fig. 1 indicate these
sites in the unit cell between different pairs of layers;
for example that labelled ab is such a site between A
and B-type layers.

The idealized structure based on this reasoning
is shown in Fig. 2, which is drawn in three parts to
show the relation between the proposed structure and
that of CsNiCls. The section between z= —}% and z=1%
consists of a slice of CsNiCl;-type structure 14 unit
cells high. The next section, between z=% and z=1, is
a similar slice which is displaced —a/3 parallel to X and
a/3 parallel to Y, whilst the section between z=1% and
z=2 represents a third similar slice displaced a/3 par-
allel to X and —a/3 parallel to Y relative to the first
slice.

The idealized positional parameters are consistent
with the most symmetrical of the possible space groups,
R3m, and initially the model was tested by means of a
block-diagonal three-dimensional least-squares refine-
ment in this space group using individual isotropic tem-
perature factors with Cs at equipoints 6(c) and 3(), Mn
at 6(c) and 3(a) and Cl at 18(#) and 9(d). In these calcu-
lations the atomic scattering factors given in Interna-
tional Tables for X-ray Crystallography (1962) for Cs*,
Mn?* and Cl~ were used and interlayer scaling was
achieved by scaling the observed to the calculated struc-
ture factors. With the idealized positional coordinates
and temperature factors similar to those found for the

Table 2. Refined temperature factors in the space

THE CRYSTAL STRUCTURE OF CsMnCl,

CsMnBr; structure, the initial R value, X|/F,|—
|Fl|/2IF,], was as low as 20%. After about 10 cycles
of refinement R decreased to 11-6 %, at which stage

Fig. 2. Projection along the ¢ axis of the idealized structure of
CsMnCl;, showing its relation to the CsNiCl; structure. The
full line represents the base of the cell and the broken line
indicates the base of a subcell of CsNiCl;-type structure; in
(a) the unit cell and subcell coincide.

Table 3. Final atomic parameters

Standard deviations are given in parentheses.

group R3m
Equipoint Coordinates B (A%
Mn(1) 3(a) 0,0,0 2-99
Mn(2) 6(¢c) 0,0,z 0-38
Cs(1) 3(b) 0,0,% 4-18
Cs(2) 6(c) 0.0,z 1-04
CI(1) 9(d) 4,0,% 3-43
Cl(2) 18(h) X,2x,2 0-62
Equipoint xla

Mn(1l) 3(a) 0

Mn(2) 3(a) 0

Mn(3) 3(a) 0

Cs(1) 3(a) 0

Cs(2) 3(a) 0

Cs(3) 3(a) 0

CI(1) 9(b) 0-1608 (6)

C1(2) 9(b) —0-1558 (5)

Cl(3) 9(b) —0-1606 (9)

yib z/e B(AY)
0 —0-0002 (7) 117 (8)

0 0-1160 (3) 134 (12)
0 —0-1159 (3) 0-89 (9,
0 0-2817 (1) 2:09 (5)
0 —0-2816 (1) 2:04 (5)
0 0-4968 (2) 1:86 (4)
0:3216 (6) 0-0571 (3) 1-34 (9)
—0:3116 (5) —0-0573 (2) 0-97 (8)
—0:3212 (9) 0-1675 (5) 1-38 (N
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the shifts in the positional parameters were all less than
15 of the estimated standard deviations. However, the
refined temperature factors were not too satisfactory,
since for each type of atom the temperature factor of an
atom in a fixed position differed greatly from that of
an atom in a position for which z could vary, as can be
seen in Table 2.
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It was therefore decided to refine the structure in the
non-centred space group R3m (No. 160) to allow shifts
in the z parameter for each atom. With Cs and Mn each
in three sets at (0,0,z) and Cl in three sets at (x,2x, z),
several cycles of refinement gave a minimum R value
of 6-4%. The temperature terms were now much more
reasonable, the shifts in all the parameters were less
than 1 of the estimated standard deviations and the
calculated structure factors of each unobserved re-
flexion were less than the minimum observable value.
Finally, an attempt was made at further refinement
in the least symmetrical of the possible space groups,
R3, to permit the x and y parameters of each chlorine
atom to vary independently, but this did not change
any of the parameters by more than one standard devia-
tion. It was concluded that R3m was the correct space
group. The final atomic parameters are given in Table
3 and the magnitudes of the calculated and observed
structure factors compared in Table 4.

Bond lengths and angles are listed in Table 5. The
average Mn—Cl and CI-Cl distances in the Mn—C]l octa-
hedra are 2-55 and 3:60 A respectively, and the average
Cs-Cl distance is 3-70 A. These magnitudes and the
fact that Pauling’s electrostatic-valency rule is obeyed
suggest that the structure is essentially ionic. The aver-
age Mn-ClI and CI-Cl distances agree very well with
those (2-:56 and 3:61 A respectively) found for the
Mn-Cl octahedra in the structure of Na,MnCl, by
Goodyear, Ali & Steigmann (1971).

Each Mn(1)-Cl octahedron shares opposite faces
with a Mn(2)-Cl and a Mn(3)-Cl octahedron and is
thereby trigonally distorted owing to the mutual repul-
sion of the three neighbouring Mn?* ions. The average
separation of these ions, 3-18 A, is significantly smaller
than the corresponding separation, 3:26 A, in the
CsMnBr structure and this consequently leads to a
greater degree of trigonal distortion than is found in
the Mn-Br octahedron in the bromide; in fact, the dis-
tortion appears to be sufficiently great to prevent the
formation of infinite chains of face-sharing octahedra.

Although Mn(2) and Mn(3) ions are equidistant
from neighbouring Mn(l) ions within one standard
deviation, the separation of planes (perpendicular to ¢)
of neighbouring Mn(2) and Mn(3) ions is significantly
shorter than the mean Mn(1)-Mn(2, 3) distance, 2:79 A
compared with 3-18 A. Three corners of each Mn(3)-
Cl octahedron are shared with Mn(2)-Cl octahedra,
the CI(3) ions being located at these common vertices.
In the Mn(2)-Cl octahedron the CI(3) ions are displaced
towards the trigonal axis of the octahedron, and con-
sequently away from the trigonal axis of a shared
Mn(3)-Cl octahedron. The resuiting CI(3)-CI(3) dis-
tances account for the difference in the distortion in
these two types of octahedron.

We thank the Science Research Council for a grant
to purchase the flying-spot microdensitometer used in
this work. One of us (DJK) is indebted to the same
body for the provision of a maintenance award.,
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Table 5. Bond lengths and angles

Standard deviations, attributable to e.s.d.’s in the positional and cell parameters, are given in parentheses.

Multiplicity
Mn(1)-Cl octahedron

Mn —ClI(1%) 3 2:570 (14) A
Mn——ClI(2}) 3 2:516 (13)
CI(1H-CI(1H 3 3-517 (14)
Cl(2H)-Cl(2H 3 3-408 (12)
Cl(1H)-C1(2") 6 3:726 (11)
Mn(2)-Cl octahedron
Mn—-CI(1%) 3 2:596 (10)
Mn—CI(3}) 3 2:472 (13)
CI(1H-Cl(1H) 3 3:517 (14)
CI(3H)-CI(3h) 3 3-512 (20)
Cl(1H)-CI(3Y) 6 3-649 (16)
Mn(3)-Cl octahedron
Mn —CI(2") 3 2:543 (8)
Mn——ClI(3') 3 2:577 (13)
Cl(2H—Cl(2") 3 3-408 (12)
CI(3'H)-CI(3') 3 3778 (20)
Cl(2H) —CI(3) 6 3639 (15)
Cs(1)-Cl distances
Cs-Cl(1) 3 3699 (9)
Cs—Cl(2}) 6 3:651 (5)
Cs-CI(3) 3 3736 (14)
Cs(2)-Cl distances
Cs—CI(19) 6 3-649 (5)
Cs-CI(2}H) 3 3-741 (8)
Cs-CI(3H 3 3-857 (14)
Cs(3)-Cl distances
Cs—CI(1) 3 3-645 (10)
Cs-Cl(21h) 3 3-820 (9)
Cs—CI(3H) 6 3648 (5)

Location of atoms [see Fig. 2(a) and (b)]:

CI(1H-Mn-CI(19) 863 (4)°
Cl(2")-Mn-Cl(2) 853 (4)
CI(1)-Mn-ClI(2Y 94-2 (4)
Cl(1H-Mn-CI(1%) 85-3 (2)
CI(31)-Mn-CI(3%) 90-5 (4)
CI(1H)-Mn-CI(3H 921 (3)
Cl(2")—Mn-Cl1(2") 84-2 (2)
CI(31)-Mn-CI(3") 94-3 (4)
Cl(2")—~Mn-CI(3"") 90-6 (3)

Mn(1) at (0,0,0); Mn(2) at (0,0,%); Mn(3) at (0,0, —3).
Cs(1) at (3,3, —7%); Cs(2) at (§,3,7%); Cs(3) at (3,3, 9).
CI(1Y) at z=45; Cl(2Y) at z= —{5; CI(2") at z=5; CI(3") at z=4; CI(3") at z=—4¢.
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